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ABSTRACT

Context. Rotation is one of the key physical mechanisms that deeply impact the evolution of stars. Helio- and asteroseismology reveal
a strong extraction of angular momentum from stellar radiation zones over the whole Hertzsprung–Russell diagram.
Aims. Turbulent transport in differentially rotating, stably stratified stellar radiation zones should be carefully modelled and its strength
evaluated. Stratification and rotation imply that this turbulent transport is anisotropic. So far only phenomenological prescriptions have
been proposed for the transport in the horizontal direction. This, however, constitutes a cornerstone in current theoretical formalisms
for stellar hydrodynamics in evolution codes. We aim to improve its modelling.
Methods. We derived a new theoretical prescription for the anisotropy of the turbulent transport in radiation zones using a spectral
formalism for turbulence that takes simultaneously stable stratification, rotation, and a radial shear into account. Then, the horizontal
turbulent transport resulting from 3D turbulent motions sustained by the instability of the radial differential rotation is derived. We
implemented this framework in the stellar evolution code STAREVOL and quantified its impact on the rotational and structural evo-
lution of solar metallicity low-mass stars from the pre-main-sequence to the red giant branch.
Results. The anisotropy of the turbulent transport scales as N4τ2/

(
2Ω2

)
, N and Ω being the buoyancy and rotation frequencies re-

spectively and τ a time characterizing the source of turbulence. This leads to a horizontal turbulent transport of similar strength in
average that those obtained with previously proposed prescriptions even if it can be locally larger below the convective envelope.
Hence the models computed with the new formalism still build up too steep internal rotation gradients compared to helioseismic and
asteroseismic constraints. As a consequence, a complementary transport mechanism such as internal gravity waves or magnetic fields
is still needed to explain the observed strong transport of angular momentum along stellar evolution.
Conclusions. The new prescription links for the first time the anisotropy of the turbulent transport in radiation zones to their stratifica-
tion and rotation. This constitutes important theoretical progress and demonstrates how turbulent closure models should be improved
to get firm conclusions on the potential importance of other processes that transport angular momentum and chemicals inside stars
along their evolution.
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1. Introduction

Rotation is one of the key physical mechanisms that deeply mod-
ify the dynamics and evolution of stars (e.g. Maeder 2009). The
transport of angular momentum and chemicals it induces in their
stably stratified radiation zones drives their secular rotational
and chemical evolution. Rotation modifies the evolutionary path
of stars in the Hertzsprung–Russell diagram (hereafter HRD),
their lifetime, their nucleosynthesis, chemical stratification and
yields, and their magnetism.

In this context, helio- and astero-seismology provide key
information through the insight they give on the internal rota-
tion profiles of the Sun and stars. On one hand, helioseis-
mic data show that the radiative core of the Sun is rotating
as an almost solid body down to r = 0.2 R� with a potential
central acceleration (Brown et al. 1989; Thompson et al. 2003;

García et al. 2007; Fossat et al. 2017). On the other hand, aster-
oseismic data reveal a strong extraction of angular momentum
over the whole HRD. First, Beck et al. (2012), Mosser et al.
(2012), Deheuvels et al. (2012, 2014, 2015), Spada et al. (2016),
Gehan et al. (2018) found a weak core-to-surface rotation
contrast in low-mass subgiant and red giant stars. Next,
Benomar et al. (2015) observed 26 solar-type stars with a
small differential rotation between the base of their convective
envelope and the upper part of their radiative core. In addi-
tion, weak differential rotation rates are found in the radiative
envelope of intermediate-mass and massive stars (Kurtz et al.
2014; Saio et al. 2015; Triana et al. 2015; Murphy et al. 2016;
Aerts et al. 2017). Finally, a strong extraction of angular momen-
tum is required to explain the rotation rates of white dwarfs
(e.g. Suijs et al. 2008; Hermes et al. 2017) and neutron stars (e.g.
Heger et al. 2005; Hirschi & Maeder 2010).
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Table 1. The turbulent diffusivities (viscosities) and their source.

Dv,v (νv,v) Vertical turbulent transport induced by the vertical shear instability
Dh,v (νh,v) Horizontal turbulent transport induced by the 3D motions of the vertical shear instability
Dh,h (νh,h) Horizontal turbulent transport induced by the horizontal shear instability
Dv,h (νv,h) Vertical turbulent transport induced by the 3D motions of the horizontal shear instability

In his seminal paper, Zahn (1992) proposed for the first
time a consistent and complete formalism to describe the sec-
ular transport of angular momentum and chemicals under the
combined action of rotation-driven vertical and horizontal tur-
bulence and meridional flows (see also Maeder & Zahn 1998;
Mathis & Zahn 2004). This theoretical treatment of rotation
relies on a key physical assumption: an anisotropic turbulent
transport in stellar radiation zones stronger in the horizontal
(latitudinal) direction than in the vertical one because of the
restoring buoyancy force along the radial entropy (and chem-
ical) stratification. This strong horizontal transport erases hor-
izontal gradients of physical quantities, among which angular
velocity, thus enforcing a “shellular” rotation depending
only on the radial coordinate. This framework allowed for
a successful implementation in 1D stellar evolution codes
(Talon et al. 1997; Meynet & Maeder 2000; Palacios et al. 2003;
Decressin et al. 2009; Ekström et al. 2012; Marques et al. 2013;
Chieffi & Limongi 2013) with numerous applications over a
broad range of stellar types and evolutionary stages.

However, disagreements between the predictions of
this formalism and seismic data on internal stellar rota-
tion at various stages of the evolution (Talon & Zahn
1998; Turck-Chièze et al. 2010; Eggenberger et al. 2012;
Marques et al. 2013; Ceillier et al. 2013) led the community
to examine the role of other transport mechanisms for angular
momentum, such as internal gravity waves (e.g. Talon et al.
2002; Talon & Charbonnel 2005; Charbonnel & Talon
2005; Charbonnel et al. 2013; Rogers 2015; Pinçon et al.
2017) and magnetic fields (e.g. Gough & McIntyre 1998;
Spruit 1999; Mathis & Zahn 2005; Eggenberger et al. 2005;
Denissenkov & Pinsonneault 2007; Strugarek et al. 2011;
Acevedo-Arreguin et al. 2013; Barnabé et al. 2017). At the
same time, the physical description of shear-induced vertical
and horizontal turbulence in stably stratified stellar layers was
not questioned.

The aim of the present paper is to shine new light on the hydro-
dynamical processes induced by rotation and on their role in the
whole picture, based on the most recent numerical and theoreti-
cal developments. In this context, recent high-resolution numer-
ical simulations in local Cartesian configurations that were per-
formed to estimate the turbulent transport induced by the insta-
bility of a vertical shear (Prat & Lignières 2013, 2014; Prat et al.
2016; Garaud & Kulenthirarajah 2016; Garaud et al. 2017) can be
used for guidance. Their comparison with former phenomenolog-
ical prescriptions for related turbulent transport coefficients in the
radial direction (Zahn 1992; Talon & Zahn 1997) indeed invites
stellar astrophysicists to reconsider this status.

This is particularly true for turbulence in the horizontal
direction. Indeed, while strong stratification is invoked as the
source of the strong anisotropic transport (Zahn 1992), none of the
prescriptions currently in use for horizontal turbulent transport
coefficients in stellar evolution codes depend explicitly on the two
restoring forces in stellar radiation zones: stratification and rota-
tion. Two mechanisms can be identified to sustain the horizontal
turbulent transport: (i) the instability of the shear of the latitudinal
differential rotation, but also (ii) the 3D turbulent motions

induced by the instability of the radial differential rotation
that transport momentum and chemicals both in the verti-
cal and horizontal directions. Symmetrically, Zahn (1992)
already identified the two sources for the vertical turbulent
transport, that is, (a) the instability of the shear of the radial
differential rotation and (b) the transport induced by the 3D
turbulent motions induced by the instability of the latitudi-
nal differential rotation. He introduced the corresponding
vertical turbulent transport coefficients, νv,v and νv,h, modelled as
eddy-viscosities, and the corresponding eddy-diffusivities, Dv,v
and Dv,h. We note that in stellar physics modelling though, the sim-
plifyingassumptionνv,v ≡ Dv,v andνv,h ≡ Dv,h hasbeenmadeuntil
now. Similarly, four coefficients νh,h, Dh,h, νh,v and Dh,v can also be
defined for the horizontal transport (Table 1 is recapitulating the
different turbulent diffusivities (viscosities) and their source). On
one hand, the first developments focused on the instability of the
latitudinal differential rotation (i.e. on νh,h and Dh,h). Zahn (1992)
initially proposed a prescription based only on phenomenological
arguments. Next, Maeder (2003) derived a prescription based
on the evaluation of the dissipation of the energy contained in a
horizontal shear.Finally,Mathis et al. (2004),deriveaprescription
based on results observed for turbulent transport in a non-stratified
Taylor–Couette experiment (Richard & Zahn 1999). On the
other hand, theoretical works (e.g. Billant & Chomaz 2001;
Kitchatinov & Brandenburg 2012) and numerical simulations
(Waite & Bartello 2006; Kitchatinov & Brandenburg 2012) in
fundamental and astrophysical fluid dynamics have been devoted
to characterize key properties of anisotropic turbulent flows in
rotating stably stratified media, such as velocities and length
scales in the vertical and horizontal directions. This is a good
motivation to also consider the horizontal transport induced by
3D turbulent motions sustained by the instability of the radial
differential rotation, which has been ignored up to now.

In this work, we derive a new prescription for the cor-
responding turbulent transport coefficients (i.e. νh,v and Dh,v).
This allows us to propose for the first time an expression that
depends explicitly on stratification, rotation, and their ratio.
In Sect. 2, we generalize the spectral model introduced by
Kitchatinov & Brandenburg (2012) to study the anisotropy of
turbulent flows in differentially rotating stably stratified layers
and we derive scaling laws allowing us to establish our new pre-
scriptions. In Sect. 3, we implement these scaling laws in the
stellar evolution code STAREVOL. We study their impact on
the rotational and structural evolution of a 1.0 M� star during its
pre-main sequence and main-sequence and on the subgiant and
giant phases of a 1.25 M� star. Finally, we discuss results and
perspectives of this work in the conclusion (Sect. 4).

2. Turbulent transport in stably stratified
differentially rotating layers

2.1. Theoretical background

2.1.1. Stably stratified fluids

Stably stratified stellar radiation zones are supposed to be the
place of a mild mixing induced by rotation that deeply impacts
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the evolution of stars (e.g. Zahn 1992; Maeder 2009). Among
the physical processes at the origin of such secular transport
of chemicals and angular momentum, shear-induced turbulence
plays a key role (Knobloch & Spruit 1982; Zahn et al. 1983;
Zahn 1992; Talon & Zahn 1997; Mathis et al. 2004).

In this context, the impact of stable stratification on turbu-
lent motions that develop in radiative regions must be under-
stood in detail and carefully evaluated. Indeed, the motions
become highly anisotropic because of the potentially strong
buoyancy force along the direction of the entropy and mean
molecular weight stratifications (e.g. Riley & Lelong 2000;
Billant & Chomaz 2001; Brethouwer et al. 2007; Davidson
2013; Marino et al. 2014, and references therein). It is quantified
by the Brunt–Väisälä frequency N, defined by

N2 =
gδ

HP
(∇ad − ∇) (1)

where we consider only the thermal part with g the gravity,
HP = |dr/d ln P| the pressure scale height, and P the pressure.
We introduce the logarithmic gradients ∇ = d ln T/d ln P with
T the temperature, and ∇ad = (∂ ln T/∂ ln P)ad, and the thermo-
dynamic coefficient δ = − (∂ ln ρ/∂ ln T )P,µ, where ρ is the den-
sity and µ the mean molecular weight. The component of the
buoyancy frequency related to µ-gradients is here ignored as a
first step. Buoyancy force reduces the amplitude of the vertical
displacement of turbulent eddies along the direction parallel to
the stratification (hereafter denoted ‖) while no restoring force
is applied along the perpendicular (generally horizontal) direc-
tion (hereafter denoted ⊥), if ignoring the action of the Coriolis
acceleration (see Sect. 2.2.2). This anisotropy induces turbulent
velocities u‖ and u⊥ in the directions parallel and perpendicular
to the stratification respectively. Moreover, flows become orga-
nized as horizontal “pancake-like” structures with characteristic
vertical and horizontal length scales, l‖ and l⊥ (see Fig. 1). When
occurring in stellar radiation zones, such anisotropic turbulence
can have important consequences (Zahn 1992). Indeed, because
of the action of the buoyancy force in the vertical direction and
of the lack of restoring force in the horizontal one, it would lead
to a stronger transport of angular momentum and chemicals hor-
izontally than vertically. This may lead to only weak horizon-
tal gradients of angular velocity (Ω), entropy (and temperature)
and mean molecular weight (Chaboyer & Zahn 1992). As pro-
posed by Zahn (1992), rotation then can become “shellular” with
related simplifications of 2D transport equations (Zahn 1992;
Maeder & Zahn 1998; Mathis & Zahn 2004) that have been
successfully implemented in several stellar evolution codes:
the Geneva code (e.g. Talon et al. 1997; Meynet & Maeder
2000; Eggenberger et al. 2008; Ekström et al. 2012), the code
STAREVOL (e.g. Palacios et al. 2003; Decressin et al. 2009;
Charbonnel & Lagarde 2010; Amard et al. 2016), the code
CESTAM (e.g. Marques et al. 2013), and the code FRANEC
(e.g. Chieffi & Limongi 2013).

The control parameter of such dynamics is the ratio between
the vertical and horizontal turbulent transport coefficients

Dv ≡ D‖ ∝ u‖ l‖ = u2
‖τ =

l2
‖

τ
(2)

and

Dh ≡ D⊥ ∝ u⊥ l⊥ = u2
⊥τ =

l2⊥
τ
, (3)

where τ is a dynamical time scale characterizing the turbulence
and its source, when assuming a diffusive description for each of

Fig. 1. Anisotropic turbulent transport in a stably stratified stellar radia-
tion zone with a buoyancy frequency N rotating with an angular velocity
Ω. We introduce the characteristic velocities (u‖, u⊥) and length scales
(l‖, l⊥) of a turbulent “pancake” in the direction of the entropy stratifi-
cation and in the horizontal one respectively and usual spherical coor-
dinates (r, θ).

them (Chaboyer & Zahn 1992). Such an assumption is justified
when the effect of the instabilities in their non-linear regime is to
cancel their source (Richard & Zahn 1999; Mathis et al. 2004).
Then, their ratio can be written

Dv

Dh
=

u2
‖

u2
⊥

=
l2
‖

l2⊥
= ε2, (4)

where we introduce ε = l‖/l⊥. From now on to Sect. 2.2.2, we
lighten notations by using {Dv,Dh} that stands for

{
Dv,v,Dh,v

}
or

{
Dv,h,Dh,h

}
, depending on the source of turbulence studied,

namely the vertical and horizontal shear, respectively.
To go further, scaling laws can be obtained using differ-
ent approaches. Following Billant & Chomaz (2001) (see also
Davidson 2013), we can introduce the horizontal Froude num-
ber of the flow

Fr⊥ =
u⊥

l⊥N
· (5)

It compares the relative strength of the inertia associated with
the horizontal advection of the horizontal turbulent motions
and buoyancy1. It can also be interpreted as the ratio between
the time associated to internal gravity waves (τIGWs = 1/N)
and the turbulent characteristic time τ. In their approach,
Billant & Chomaz (2001) consider u⊥ and l⊥ as fixed quanti-
ties. The vertical characteristic velocity (u‖) and length scale
(l‖) result from the dynamics of the stably stratified flow. Using
dimensionless quantities in the Navier–Stockes, continuity, and
heat transport equations (in the inviscid and adiabatic limits)
describing the dynamics of non-rotating stably stratified flows
(we refer the reader to the Eqs. (7)–(10) of their article), they
showed that a second vertical Froude number

Fr‖ =
Fr⊥
ε

=
u⊥
l‖N

(6)

is also a characteristic number of the system. It compares
the inertia of the vertical advection of the horizontal turbu-
lent motions and buoyancy. Making an asymptotic expansion of
1 The Froude number is the equivalent for stably stratified flows of the
Rossby number for rotating flows.
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these equations in the regime of strong stratification for which
Fr⊥<<1, they identified a self-similarity that leads to

ε =
l‖
l⊥
≈

u‖
u⊥
≈ Fr⊥ and thus Fr‖ ≈ 1. (7)

These scaling laws have been verified in high-resolution
non-linear Cartesian numerical simulations computed by
Brethouwer et al. (2007) for high Reynolds numbers.

This implies that
Dv

Dh
≈ Fr2

⊥. (8)

Therefore, as expected, the anisotropy becomes larger when sta-
ble stratification is stronger because of the corresponding verti-
cal buoyancy restoring force. Thus, Dv/Dh → 0 (or Dh/Dv →

∞) when N → ∞. However, stars are potentially rapidly rotating,
for example, young solar-type stars and intermediate-mass and
massive stars (e.g. Meynet & Maeder 2000; Gallet & Bouvier
2013, 2015). Moreover, their angular velocities vary over several
orders of magnitude along their evolution. It is thus mandatory
to understand and quantify the effect of the Coriolis accelera-
tion, which will also constrain turbulent motions, particularly in
the horizontal direction.

2.1.2. Effects of rotation

The effects of the stable stratification in the vertical direction on
turbulent flows being now introduced, the balance in the hori-
zontal direction and the effects of rotation through the Coriolis
acceleration should be examined. Indeed, if turbulent motions
induced by the vertical shear instability are considered, they are
intrinsically 3D and they induce turbulent transport and mix-
ing both in the vertical direction, where they are submitted to
the buoyancy force, and in the horizontal direction, where the
Coriolis acceleration is the restoring force.

In his seminal paper, Zahn (1992) already pointed out the
key role of rotation to control the anisotropy of turbulent trans-
port in stably stratified stellar radiation zones. He discussed the
transition between 3D isotropic to 2D rotationally controled tur-
bulent flows (see e.g. Hopfinger et al. 1982, for experimental
studies) and its consequence for the vertical turbulent transport.
In this context, he also showed how the instability of an hori-
zontal shear contributes to this transport in the radial direction,
and he derived the prescriptions for the eddy-viscosity νv,h (we
refer the reader to Eqs. (2.19), (2.20), (2.22), and (2.23) in Zahn
1992). This already points out how the 3D turbulence induced by
the instability of a shear varying along a given direction (radial
or latitudinal) sustains turbulent transport both in the vertical and
horizontal directions. Therefore, one must take into account the
contributions of both vertical and horizontal shear instabilities
when studying the horizontal (and vertical) turbulent transport
in stellar radiation zones.

In addition, several works in fundamental fluid mechanics
examined the strength of the anisotropy of turbulence in stably
stratified rotating flows as a function of their buoyancy frequency
(N) and angular velocity (Ω). Depending on the rotation rate,
Billant & Chomaz (2001) propose that the anisotropy is driven
either mainly by stratification (in the regime of “slow” rotation)
or by the combined action of stratification and rotation (in the
regime of “rapid” rotation). The physical parameter that controls
the transition from one regime to the other is the dimensionless
Rossby number

Roh =
u⊥

2Ωl⊥
, (9)

which quantifies the relative strength of advection in the horizon-
tal direction to the Coriolis acceleration. In the slowly rotating
regime (Roh → ∞), their formalism recovers results discussed in
the previous section when ignoring rotation. In the rapidly rotat-
ing regime (Roh << 1), which is of interest for stellar radiation
zones2, they find that

l⊥ =
N

2Ω
l‖. (10)

We here recognize the internal Rossby deformation radius in the
case where the full Coriolis acceleration is taken into account
(Dellar & Salmon 2005, see also Pedlosky 1982). It charac-
terizes the restoring action of the Coriolis acceleration in the
horizontal direction, along which rotation limits the size of tur-
bulent stratified pancakes with l⊥ decreasing with increasing
Ω. Therefore, rotation competes with stratification, which sus-
tains the anisotropy of turbulent flows with l⊥ that increases
with N. These theoretical scaling laws have been confirmed
by Waite & Bartello (2006) who computed high-resolution non-
linear numerical simulations in Cartesian geometry where they
explored the variations of l‖ as a function of Roh. This proposed
scaling, in conjunction with Eq. (4), leads to

Dv

Dh
≈

(
2Ω

N

)2

. (11)

However, these studies do not take into account a large-scale
shear, the key physical ingredient of stellar radiation zones we
are studying here.

In this framework, the results obtained by
Kitchatinov & Brandenburg (2012) are of great interest.
Indeed, although they focused in their work only on the case of
uniform rotation as in Billant & Chomaz (2001), they derived a
general analytical spectral formalism that allows one to derive
the response of a stratified rotating fluid to a pre-existing source
of turbulence and the anisotropy of the induced turbulent trans-
port. In the cases they studied, they compared the predictions
of this turbulent model to direct high-resolution non-linear
numerical simulations and showed that the results agree very
well. This strongly motivates a generalization of their work by
taking into account simultaneously a large-scale shear, stable
stratification and rotation to study the problem of anisotropic
turbulent transport induced by shear instabilities in stellar
radiation zones. This is what we propose below.

2.2. Anisotropic turbulent transport in stably stratified rotating
radially sheared flows

2.2.1. Spectral formalism

In this section, we generalize the formalism of
Kitchatinov & Brandenburg (2012) in the case of a sheared,
rotating, stably stratified flow. We intend to determine the
response of the fluid to a pre-existing source of turbulence
characterized by a velocity field u0. We write fluid equations
using the Boussinesq approximation where we assume that
space-scales characterizing turbulent motions are smaller than
those of the variations of background quantities.

Moreover, following Kitchatinov & Brandenburg (2012), a
relaxation approximation is used to remove non-linear terms. It
consists of assuming that the fluid tends to reach a steady state
with a typical timescale τ. Mathematically, it reads
dX
dt

=
∂X
∂t

+ u · ∇X →
X
τ
, (12)

2 See Appendix B.
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for any quantity X. Another simplification is that the background
turbulence forces the flow with the same time scale, so that the
forcing term can be written u0/τ.

In the presence of a shear S = r sin θ∇Ω, the flow is thus
described by the continuity equation ∇ · u = 0 and the momen-
tum and heat transport equations for adiabatic motions, where
diffusion and viscosity are neglected as a first step:

u
τ

+ 2Ω ∧ u + (S · u)eϕ +
∇P
ρ
− g =

u0

τ
, (13)

s′

τ
= −u · ∇〈s〉. (14)

Here, s′ denotes the specific entropy fluctuations and 〈s〉 the
mean specific entropy. We also introduced the unit-vector basis{
e j

}
j=r,θ,ϕ

in spherical coordinates. Following Zahn (1992), here
we assume a priori that Dv <<Dh leading to a shellular differen-
tial rotation and corresponding shear which mainly depends on
the radial coordinate. We thus consider the case of a purely radial
shear S = Ser. This hypothesis will be verified in Appendix B.

After combining the momentum and heat transport equations
and eliminating the pressure fluctuations thanks to the continuity
equation, one obtains in the Fourier space

ũ
τ

+ 2(k̂ ·Ω)k̂∧ ũ + S ũr(eϕ − k̂ϕk̂) + τũrN2(er − k̂rk̂) =
ũ0

τ
, (15)

where ũ is the Fourier transform of u and k̂ = k/‖k‖ is the nor-
malized wave vector. This can be written as a matrix equation

M · ũ = ũ0, (16)

with

Mi j = δi j +σΩ∗εil jk̂l +S ∗(δiϕ− k̂ϕk̂i)δ jr + N∗2(δir− k̂rk̂i)δ jr, (17)

where σ = k̂ · Ω/Ω, Ω∗ = 2τΩ, S ∗ = τS , N∗ = τN, and δi j
and εil j are the usual Kronecker and Levi-Civita symbols respec-
tively. The matrix equation can be solved, using

M−1 = D−1
{[

1 + N∗2(1 − µ2)
]
δi j + σ2Ω∗

2k̂ik̂ j + σΩ∗εi jlk̂l

+ σΩ∗N∗2εilrµk̂ jk̂l + N∗2
(
µk̂i − δir

)
δ jr

− S ∗µk̂ϕδiϕδ jϕ + S ∗ε jlϕk̂lk̂ϕδiθ − S ∗(1 − k̂2
ϕ)δiϕδ jr

−σΩ∗S ∗(1 − k̂2
ϕ)k̂ jδiθ − σΩ∗S ∗k̂θk̂ϕk̂ jδiϕ

}
, (18)

where

D = 1 + N∗2(1 − µ2) + σ2Ω∗
2
− S ∗µk̂ϕ − σΩ∗S ∗k̂θ (19)

and µ = k̂r. Some terms of M−1 vanish when applied to ũ0,
because the latter also satisfies the continuity equation k̂ jũ0

j = 0.
This finally leads to

ũ = A · ũ0, (20)

with

DAi j =
[
1 + N∗2(1 − µ2)

]
δi j + N∗2

(
µk̂i − δir

)
δ jr + σΩ∗εi jlk̂l

− S ∗ µk̂ϕδiϕδ jϕ + S ∗ε jlϕk̂lk̂ϕδiθ − S ∗(1 − k̂2
ϕ)δiϕδ jr.

(21)

We introduce the spectral tensor Q̃0, which characterizes the
properties of the background turbulence. It is defined by〈
ũ0

i (k)ũ0
j (k
′)
〉

= Q̃0
i jδ(k + k′), (22)

where 〈〉 denotes a statistical average. Then, it is possible to
derive the spectral tensor of the generated turbulence Q̃ by using
the relation

Q̃i j = AimA jnQ̃
0
mn . (23)

In the case of purely horizontal random motions, which are an
idealized view of turbulent displacements in a strongly stratified
medium, we have

Q̃0
i j =

3E(k)
8πk2

[
(1 − µ2)(δi j − k̂ik̂ j) − (δir − µk̂i)(δ jr − µk̂ j)

]
, (24)

where E(k) is the kinetic energy spectrum function defined by〈
(u0)2

〉
=

∫ ∞

0
E(k)dk. (25)

The full expression for the tensor Q̃ is too complex to be shown
here. Instead, we have focussed on the components needed to
determine the anisotropy of the transport using Eq. (4). We have

Q̃rr =
3E(k)

8πk2D2σ
2Ω∗

2(1 − µ2)2, (26)

Q̃θθ =
3E(k)

8πk2D2

{[
1 + N∗2(1 − µ2) − S ∗µ

]
k̂ϕ − σΩ∗µk̂θ

}2
, (27)

Q̃φφ =
3E(k)

8πk2D2

{[
1 + N∗2(1 − µ2) − S ∗µk̂ϕ

]
k̂θ + σΩ∗µk̂ϕ

}2
.

(28)

Assuming that N∗ � 1 (i.e. N � τ−1) and N∗ � Ω∗ (i.e.
N � 2Ω as expected in the bulk of stellar radiation zones),
these expressions can be simplified by retaining only the domi-
nant terms. In this regime, Eq. (19) becomes

D ' N∗2(1 − µ2) (29)

and Eqs. (26)–(28) yield

Q̃rr '
3E(k)
8πk2

σ2Ω∗2

N∗4
, (30)

Q̃θθ '
3E(k)
8πk2 k̂2

ϕ, (31)

Q̃ϕϕ '
3E(k)
8πk2 k̂2

θ , (32)

which show no explicit dependence on the shear number S ∗.
Therefore, we recover in the case of a radial differential rotation
the expressions found by Kitchatinov & Brandenburg (2012) in
the case of solid-body rotation.

Turbulent velocity correlations, which allow us to evaluate
transport properties, are finally obtained thanks to the relation

〈uiu j〉 =

∫
Q̃i jdk. (33)

We define the two angles α and β such that

k̂r = cosα, (34)

k̂θ = sinα cos β, (35)

k̂ϕ = sinα sin β. (36)
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The infinitesimal wave vector element can be written

dk = k2 sinα dk dα dβ, (37)

where k is the norm of k, and we now have

σ = cos θ cosα − sin θ sinα cos β. (38)

Equations (30)–(32) lead to

〈u2
r 〉 ' 〈(u

0)2〉
Ω∗2

2N∗4
, (39)

〈u2
θ〉 ' 〈u

2
ϕ〉 '

〈(u0)2〉

2
· (40)

In the previously introduced notations, one has u2
⊥ = 〈u2

θ〉 + 〈u
2
ϕ〉

and u2
‖

= 〈u2
r 〉. Using Eq. (4), we finally obtain

Dv

Dh
=

1
2

(2Ω)2

N4τ2 · (41)

As expected, the strength of the horizontal turbulent transport
relatively to the vertical one is thus increasing with stratification
(as N4). On the other hand, it decreases with rotation (as Ω−2)
since rotation is limiting horizontal turbulent motions through
the Coriolis acceleration.

This result constitutes a new key to understanding the
anisotropic turbulent transport in stellar radiation zones. If we
are able to compute the turbulent transport in the vertical (hor-
izontal) direction induced by a given instability, it allows us to
deduce the induced transport in the horizontal (vertical) one as a
function of stratification and rotation. This strongly improves the
current state of the art with respect to prescriptions previously
proposed for Dh ≡ Dh,h (Zahn 1992; Maeder 2003; Mathis et al.
2004) for the turbulent transport induced by the instability of the
horizontal shear, that were based on phenomenological laws and
which did not take the simultaneous action of the stratification
and the Coriolis acceleration into account.

However, the time τ that characterizes the turbulence is still
a free parameter in Eq. (41), and should be specified. The only
constraint proposed by Kitchatinov & Brandenburg (2012) is
that it should be much larger than the time characterizing the
buoyancy τN = 1/N.

2.2.2. Characterization of the turbulent timescale

We propose here three physically motivated possibilities to esti-
mate the turbulent timescale: (i) the time characterizing the
radial shear, τ = 1/S , where S = r sin θ∂rΩ; (ii) a time char-
acterizing the Coriolis acceleration of a rotating radially sheared
flow, τ = 1/(2Ω+S ); and (iii) the time associated to the epicyclic
frequency NΩ =

√
2Ω(2Ω + S sin θ), which is one of the fre-

quencies characterizing differentially rotating flows and their
stability, τ = 1/NΩ.

First, we consider the case of unstable non-rotating verti-
cally sheared flows. The results of numerical simulations of
shear instability without rotation (Prat & Lignières 2014) sug-
gest that the typical turbulent timescale, which corresponds to
the turnover time of large eddies, is of the order of 1/S in
the non-rotating strongly stratified regime. Therefore, τ = 1/S
seems to be a reasonable choice when the dynamics is dominated
by the shear.

Moreover, this choice allows one to recover the model of
vertical turbulent transport by Zahn (1992) using arguments on
timescales. Indeed, the fact that turbulence can be sustained only

if the dynamical timescale τ is smaller than the timescale of the
process that inhibits turbulence in the vertical direction, here the
stratification modified by thermal diffusion, can be written

τ <
K

N2l2
‖

, (42)

where K is the thermal diffusivity and l‖ the typical turbulent
length scale along the stratification direction. The scales that
induce the most important transport are the largest unstable
scales given by

l2‖ =
K

N2τ
· (43)

The turbulent transport along the vertical direction is then of the
order of S l2

‖
, which yields

Dv,v ∼
KS
N2τ
· (44)

Choosing τ = S −1 finally implies

Dv,v ∼
KS 2

N2 , (45)

which is exactly the same model as the one by Zahn (1992). We
recall that this turbulent transport occurs if and only if the tur-
bulent Reynolds number (i.e. the ratio between the viscous time
and the dynamical time of turbulence) Re =

(
u‖ l‖

)
/ν, where ν is

the viscosity of the fluid, is larger than a critical value Re;c (Zahn
1992; Talon & Zahn 1997; Prat et al. 2016). In the STAREVOL
code, we chose to set Re;c = 10 that corresponds to a value of
Dv,v of the order of ten times the molecular viscosity.

When the dynamics is no longer dominated by the shear
because of rotation, τ = 1/(2Ω + S ) becomes a plausible choice.
Indeed, the frequency 2Ω + S characterizes the Coriolis accel-
eration along the azimuthal direction in a rotating sheared flow
(e.g. Mathis 2009). Moreover, it allows one to recover τ = 1/S
in the asymptotic limit where Ω � S . In contrast, when the shear
is negligible, τ ' 1/(2Ω), which is the characteristic time scale
of inertial waves. This can be expected since inertial waves are
known to structure turbulence in rapidly rotating flows because
of their non-linear interactions (e.g. Sen et al. 2012).

Another frequency that characterizes differentially rotat-
ing fluids and their stability, the epicyclic frequency (e.g.
Pringle & King 2007)

N2
Ω =

1
$3

d
d$

(
$4Ω2

)
= 2Ω

(
2Ω +$

dΩ

d$

)
, (46)

with $ = r sin θ, can also be considered with the correspond-
ing characteristic time τ = 1/NΩ. In the limit where the shear is
negligible, one obtains τ ' 1/(2Ω), as with τ = 1/ (2Ω + S ). In
the opposite limit where rotation is negligible, τ ∼

√
2ΩS sin θ,

which is not compatible with the two other choices (τ =
1/S , 1/ (2Ω + S )), since τ still depends on Ω.

We should here point out that one will be able to make a
choice between τ = 1/ (2Ω + S ) and 1/NΩ only when direct
numerical simulations of the vertical shear instability in rotat-
ing stably stratified fluids will be available for stellar regimes.
This is the reason why here we study and discuss both cases.
Another important point to keep in mind when choosing one
of these characteristic times is to verify that the rotation pro-
file is not subject to the Rayleigh–Taylor instability for which
N2

Ω
< 0. In practice, this is generally not a problem during the
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main-sequence since N2
Ω
> 0 at this phase. However, for neg-

ative values of N2
Ω

, one would need to model the effect of the
Rayleigh-Taylor instability itself and the turbulent transport it
induces (Maeder et al. 2013).

Finally, if one considers the choice τ = 1/N, even though
Kitchatinov & Brandenburg (2012) assumed it was not the case,
one obtains an anisotropy which is consistent with the work
by Billant & Chomaz (2001). However, 1/N characterizes the
stratification that inhibits the turbulence while the non-linear
timescale should rather be given by the process that drives the
turbulence, that is, the shear. Therefore, we rule out this possi-
bility in the following study.

2.2.3. Horizontal turbulent transport

Using Eq. (41), it is finally possible to derive Dh when knowing
Dv (or vice-versa):

Dh

Dv
=

1
2

N4

Ω2 τ
2 (47)

for a given choice of turbulent source and characteristic time τ.
In stellar radiation zones, the main important source

of turbulence in the vertical direction is the secular verti-
cal shear instability (Zahn 1992; Talon & Zahn 1997). This
instability induces 3D turbulent motions both in the vertical
and in the horizontal directions (e.g. Prat & Lignières 2013;
Garaud & Kulenthirarajah 2016). The horizontal turbulent diffu-
sion coefficient computed using Eq. (47), when assuming that
Dv is associated with this secular radial shear instability (i.e.
Dv ≡ Dv,v and thus Dh ≡ Dh,v) and non-zero (for Re > Re;c),
thus corresponds to the horizontal turbulent transport induced by
3D anisotropic turbulent motions this vertical instability sustains
because of the stable stratification and rotation.

It is important to point out that if the horizontal shear
becomes large enough to be simultaneously unstable, it will
induce a horizontal turbulent transport with the corresponding
turbulent diffusion coefficient (Dh,h, see Mathis et al. 2004) as
well as a vertical transport (and corresponding vertical turbulent
diffusion coefficient Dv,h). This is because of the 3D anisotropic
turbulent motions this horizontal instability would sustain. This
was already pointed out by Zahn (1992) (in his Sect. 2.4.2), even
if it has never been considered in stellar evolution studies.

In this work, we have chosen to focus on the first of these
two cases. To describe the turbulent transport along the radial
direction due to the secular radial shear instability, we adopted
the model derived by Zahn (1992):

Dv,v =
Ric
3

K
(

r sin θ ∂rΩ

N

)2

if Re > Re;c, (48)

which has been recently examined and validated by inde-
pendent high-resolution Cartesian non-linear numeri-
cal simulations (Prat & Lignières 2013; Prat et al. 2016;
Garaud & Kulenthirarajah 2016). The horizontal turbulent
diffusion coefficient associated with the horizontal turbulent
transport induced by 3D motions that the vertical instability
sustains when Re > Re;c, Dh,v, is derived using Eq. (47).

The first possible choice for τ, namely τ = S −1, leads to

Dh,v =


2Ric

3

( N
2Ω

)2

K if Re > Re;c

0 if Re < Re;c.
(49)

In this case, we thus obtain a discontinuous variation for Dh,v
if the Reynolds criterion is not met and the vertical shear-
induced turbulence vanishes. This may be regularized once a
prescription for Dv,v that will take into account the action of the
Coriolis acceleration will be derived. Since we expect the
Coriolis acceleration to stabilize the flow, the transport predicted
by Eq. (49) can be considered as an upper limit of the actual
transport efficiency.

We then examined the two choices for characteristic turbu-
lent timescales that already include rotation. First, assuming a
shellular rotation (see Appendix B), the expression

τ = (2Ω + S )−1 = (2Ω + r sin θ∂rΩ)−1 (50)

leads to

Dh,v =


2Ric

3

( N
2Ω

)2

K
sin2 θ(

X−1 + sin θ
)2 if Re > Re;c

0 if Re < Re;c

, (51)

where X = r∂rΩ/(2Ω). For the implementation in 1D stellar evo-
lution codes, we take a latitudinal average of this expression

Dh,v =


2Ric

3

( N
2Ω

)2

K
〈

sin2 θ(
X−1 + sin θ

)2

〉
θ

if Re > Re;c

0 if Re < Re;c

,

(52)

where 〈...〉θ =
∫ π

0 ...sin θ dθ/
∫ π

0 sin θ dθ.
Finally, considering the epicyclic characteristic time

τ =
1

NΩ

=
[
2Ω

(
2Ω + r∂rΩ sin2 θ

)]−1/2
, (53)

we obtain

Dh,v =


2Ric

3

( N
2Ω

)2

K
〈

X sin2 θ

X−1 + sin2 θ

〉
θ

if Re > Re;c

0 if Re < Re;c

.

(54)

The horizontal averages in Eqs. (52) and (54) are analytically
computed in the Appendix A to allow a robust numerical imple-
mentation.

Interestingly, all the choices for τ lead to the same depen-
dence of Dh,v on the ratio N/(2Ω). Including rotation in the
prescription for τ also allows us to regularize the behaviour
of Dh,v for a vanishing vertical shear-induced turbulence. This
is a significant improvement towards a consistent description
of anisotropic turbulence in stellar radiation zones. As already
pointed out above, the next step requires a model for Dv,v that
takes the action of the Coriolis acceleration into account. This
should be achieved with direct numerical simulations of the ver-
tical shear instability in rotating stably stratified fluids in stellar
regimes, which are beyond the scope of this work, and which will
allow us to test our analytical prescriptions. In this framework, it
is important to take also the action of the chemical stratification
(through the µ-gradients) and of the viscosity into account as
in Prat et al. (2016). Finally, it is necessary to take into account
the possible feed-back of the horizontal turbulence on the ver-
tical turbulent transport (Talon & Zahn 1997). In the following
section, we investigate the impact of the different expressions
we derived for Dh,v on the transport of angular momentum along
the evolution of low-mass main sequence (MS), subgiant and red
giant stars.
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3. Application to stellar interiors and evolution

3.1. Method

We implemented Eqs. (48), (49), (52), and (54) in the stellar
evolution code STAREVOL as an additional source of turbu-
lence in the horizontal direction. The total horizontal turbulent
diffusion coefficient Dh is then defined as the sum of Dh,v as
given by these equations (we test the different expressions for
τ) and of Dh,h from Mathis et al. (2004, Eq. (19)). The treat-
ment of rotation-induced processes in STAREVOL is described
in detail, for example in Decressin et al. (2009) and Amard et al.
(2016), and we refer to this latest paper for the information
on the basic input physics (i.e., equation of state, nuclear reac-
tions, opacities, etc.) used here (see also Siess et al. 2000;
Palacios et al. 2003; Lagarde et al. 2012). The angular velocity
profile in the radiative interior derives from the redistribution of
angular momentum by shear-induced turbulence and meridional
flows, which are treated using the formalism derived by Zahn
(1992), Maeder & Zahn (1998), and Mathis & Zahn (2004);
uniform rotation is assumed in convective regions. Angular
momentum losses at the stellar surface due to pressure-driven
magnetized stellar winds are taken into account using the pre-
scription by Matt et al. (2015). Convective regions are modelled
according to the mixing length theory. The adopted mixing-
length parameter is defined by the calibration of a standard solar
model and is fixed to αMLT = 1.973. We adopted Z = 0.013446
as the initial metallicity that corresponds to the solar metallicity
according to Asplund et al. (2009).

We explored the impact of our new modelling of the
shear-induced horizontal turbulence on the transport of angular
momentum in low-mass stars along the MS and the red giant
branch. We start with the case of a 1 M�, Z� model for which
we have constraints both on the internal rotation rate at the age
of the Sun and on the evolution of the surface rotation with
time (Sect. 3.2). We then moved to the case of a 1.25 M�, Z�
model which internal and surface rotation states are constrained
by asteroseismic data from mixed modes of subgiant and giant
stars (Sect. 3.3).

3.2. Case of a 1.0 M�, Z� main sequence star

We focus on a 1.0 M� star at solar metallicity and present a com-
parative analysis of the evolution of the different diffusion coef-
ficients and meaningful quantities as a function of time along the
MS evolution of this low-mass star. For this, we compared sev-
eral models computed from the pre-main sequence (PMS) up to
9 Gyr with the different expressions for τ (i.e., with the differ-
ent expressions for the horizontal eddy diffusivity Dh,v given in
Eqs. (49), (52), and (54), added to the horizontal turbulent dif-
fusivity Dh,h derived in Mathis et al. 2004), keeping all the other
ingredients unchanged. These models are also compared with a
model that ignores Dh,v and includes only the prescription for
Dh,h given by Mathis et al. (2004).

3.2.1. Model setup

We used similar assumptions for the initial rotation rate and
prescription for magnetic braking as in Amard et al. (2016). A
phase of disc coupling, during which the surface rotation rate is
maintained to its original value of Ωini = 1.6× 10−5 s−1 (corre-
sponding to an initial rotation period of 4.55 days), is accounted
for during the first 5 Myr of the evolution on the PMS. This
corresponds to a median rotator, as observed in statistical sam-
ples of PMS stars in young clusters (see Amard et al. 2016 and

Table 2. Specifications of the different 1 M�, Z� models.

Model τ Dh,v Rotation Colour

A1 1/S Eq. (49) Median Green
A2 1/S Eq. (49) Fast Light green
A3 1/S Eq. (49) Slow Dark green
B 1/(2Ω + S ) Eq. (52) Median Blue
C 1/NΩ Eq. (54) Median Magenta
D – – Median Black

Notes. In all cases Dh,h is included using Mathis et al. (2004) prescrip-
tion and added to Dh,v given in Col. 3, except in case D where we use
Dh,h only. The final column refers to the colors used for the different
models in Figs. 2–6.

Gallet & Bouvier 2015 for details). Four median rotator models
are thus computed, three with the different expressions for Dh,v
added to Dh,h from Mathis et al. (2004), and the last one with
only Dh,h. For the case where Dh,v is computed with τ = 1/S
(Eq. (49)), we also compute two models with different initial
velocities to investigate the effect of the global velocity on the
turbulent transport; these fast and slow rotators start with an ini-
tial period of 1.4 and 9.0 days, respectively. For all the models
angular momentum losses at the stellar surface due to pressure-
driven magnetized stellar winds are taken into account using the
prescription by Matt et al. (2015) with Kwind = 7 × 1030 to fit
the solar rotation rate at 4.57 Gyr, m = 0.22 as expected from
a purely dipolar magnetic field and the parameter p = 2.4 to fit
the surface rotation rates in open clusters at best. We then cover
the statistical distributions of rotation periods in open clusters
and associations from 1 Myr to 2.5 Gyr (Gallet & Bouvier 2013,
2015; Amard et al. 2016). We summarize in Table 2 the specifi-
cations of the different 1 M�, Z� models that we compare below.

3.2.2. Comparing different prescriptions for the horizontal
turbulent diffusivity

In Fig. 2, we compare the profiles of the total horizontal diffusiv-
ity Dh and of the vertical diffusivity Dv,v within all the 1.0 M�, Z�
models described in Table 2 at three different epochs on the MS
(zero age main sequence, age of the Sun, and when the central
hydrogen mass fraction is reduced to 10% of its original value).
We note first that below ∼0.5 R?, where R? is the radius of the
star, the novel expressions for the horizontal turbulent diffusion
(Dh,v) lead to values for the total Dh = Dh,v + Dh,h that are very
close to the ones given by the expression of Dh,h by Mathis et al.
(2004) alone. The main reason for this behaviour is that the dif-
ferential rotation needs to be high enough to trigger on the ver-
tical shear instability (i.e. Re > Re;c), and this is not the case in
the central part of the star for most of the MS. Therefore, the
horizontal component of Dh (Dh,h) given by Mathis et al. (2004)
dominates the transport of angular momentum along the isobars,
all along the MS in the deep interior. This can be seen clearly by
looking at the behaviour of Dh,v, which becomes important only
in the outer part of the radiative region above ∼0.5 R? where dif-
ferential rotation is stronger (and able to trigger the vertical shear
instability), as imposed by the extraction of angular momentum
by the magnetized wind. At the age of the Sun and up to the turn-
off, Dh,v can be several orders of magnitude higher than Dh,h in
these outer layers below the convective envelope.

Figure 2 also shows the profiles of the vertical turbulent dif-
fusivity Dv = Dv,v at the same evolutionary stages for all the
prescriptions. The strong coupling at the ZAMS obtained in the
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Fig. 2. Top row: total horizontal turbulent diffusivity Dh (full line) and its Dh,v component (when active if Re > Re;c; dotted lines) for the 1.0 M�,
Z� models described in Table 2 at three evolutionary stages (from left to right: ZAMS, age of the Sun, and when the central H mass fraction is
reduced to 10% of its original value). The hatched areas correspond to the convective regions. Bottom row: vertical turbulent diffusion coefficient
in the same models.

fast rotator (light green curve, model A2) is due to a very efficient
transport by the meridional circulation, and results in a weak
vertical turbulent transport as can be seen in the correspond-
ing bottom left panel. As the models evolve on the MS a flat-
tening of the Dv profile appears below the convective envelope
(above r ≈ 0.5 R?) for models A1, A2, A3, B and C. The vertical
shear-induced turbulent transport seems to be weaker in average
around log(Dv) ≈ 2.5 in this region when the radial differen-
tial rotation is accounted in addition to the horizontal shear as
a source for the horizontal turbulent transport (i.e. when adding
Dh,v to the Dh,h of Mathis et al. 2004). The radial variations of Dv
can also be understood by the radial differential rotation obtained
for r > 0.5 R? reported in Fig. 5.

On the upper panel of Fig. 3 we show the anisotropy ratio of
the turbulence given by Eq. (47). We note that this representation
actually corresponds to the potential anisotropy of turbulence
since we plot it even in the vertical shear-stable regions. We can
distinguish two behaviours with the new prescriptions: the case
of models B and C where the turbulent timescale depends on the
rotation rate on one hand, and the case of models A where such
a dependence is not present (τ = 1/S ) on the other hand. While
both groups show an anisotropy ratio that increases moderately
during the evolution, in the first group of models the anisotropy
is relatively low in the central region due to the higher angular
velocity there, while in the second case the anisotropy is strong
in the central region. Quantitatively during the MS, the region
below the envelope shows an anisotropy ratio that is about 109.
This means that whenever the vertical shear is high enough to
overcome the Reynolds criterion (i.e. Re > Re;c) below the con-
vective envelope for r > 0.5 R?, the total horizontal diffusion
coefficient log(Dh) rises from 7.5 up to 11.5 (' 109 × Dv) that
leads to a stronger meridional circulation and transport of angu-
lar momentum as explained in Appendix C.

On the lower panel of Fig. 3 we show the product of the
Brunt–Väisälä frequency N (its thermal part given in Eq. (1)) by

the turbulent characteristic timescale τ for models A, B and C
at the same evolution points on the MS. As initially assumed by
Kitchatinov & Brandenburg (2012), this quantity turns out to be
greater than unity all along the MS evolution. It stays quite con-
stant during this latter and shows very similar values in models
B and C. Indeed, rotation tends to compensate for the disappear-
ance of the shear, and even leads to a decrease of the turbulent
timescale, thus limiting the increase of the product Nτ. For mod-
els A though, the product Nτ is high in the central region where
the shear is weaker at early stages (see below, Fig. 5) and the
Brunt–Väisälä frequency is important.

Finally, we show the effective diffusivity (Fig. 4) that is
also affected by the change of horizontal turbulent diffusion
coefficient and the potentially enhanced meridional circula-
tion (see Appendix C), consistently with what was already
pointed out in Mathis et al. (2007), the erratum associated with

Mathis et al. (2004). By definition, Deff =
1
30

(rU2)2

Dh
, where

U2 (r) is the radial function of the expansion of the radial
component of the meridional circulation on Legendre polynomi-
als (Chaboyer & Zahn 1992). In the case of a strong horizontal
turbulence, one can see in Decressin et al. (2009; we refer the
reader to Eqs. (32) and (40) in this article) that entropy advec-
tion by the meridional circulation balances the horizontal tur-
bulent heat diffusion. Then, we have U2 ∝ Dh and Deff ∝ Dh.
This explains both the amplitude and the radial variations of Deff

observed for r > 0.5R? in models A, B, and C.

3.2.3. Impact on the evolution of the internal and surface
rotation

We now discuss the impact of introducing the new formalism
for Dh on the evolution of internal rotation and on the surface
rotation rates of the 1.0 M�, Z� models. First, we verify and con-
firm in Appendix B that the hypothesis of a shellular rotation are
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Fig. 3. Top row: anisotropic ratio given by Eq. (47) for the different choices of τ. It represents the potential anisotropy of turbulence sustained
by the vertical shear instability in the stably stratified differentially rotating medium. It is thus equivalent to the ratio between the horizontal and
vertical turbulent diffusivities (Dh,v/Dv,v) when the latter is active. Bottom row: product of the thermal part of the Brunt–Väisälä frequency (N) by
the computed turbulent characteristic time (τ). Both are shown at the same evolutionary stages and with the same colour code as in Fig 2.

Fig. 4. Effective diffusivity Deff in the vertical direction induced by the advective transport at the same evolutionary stages and with the same
colour code as in Fig 2.

respected, that is, Dv << Dh and Ω (r, θ) ≈ Ω (r). Next, Fig. 5
shows the internal rotation profiles and the differential rotation
rate (defined as −rΩ′/2Ω, where ′ denotes the radial derivative
d/dr) for all the models at the same ages as previously (upper
and lower panels respectively). Given the results on the total hor-
izontal diffusivity Dh presented in Sect. 3.2.2, adding the vertical
source for horizontal turbulence Dh,v, has globally little impact
on the rotation profiles, which remain strongly differential dur-
ing the overall MS evolution. The ZAMS almost flat profile
exhibited by model A2 (fast rotator, light green) reflects a strong
coupling at the ZAMS for the fast rotators, that is nonetheless
rapidly wiped out by wind braking later on the MS evolution.
At the ZAMS, the only distinction that can be made between
the different models is related to their initial spin rate. This is
related to the shallow differential rotation at that time. The mod-
els keep the rotational properties they have been given initially,
meaning that a fast (slow) rotator is still fast (slow) rotator. More-
over, the PMS contraction and the relatively high angular veloc-
ity in the early phases where magnetic braking is not yet at its
maximum efficiency lead to a very high Dh,h. Therefore, the

impact of the new component Dh,v is negligible at this phase
and the four models initialised with the same rotation rate are
superimposed. At the age of the Sun and later at the end of the
MS, we can no longer distinguish between the different rotators
in terms of surface rotation. However, the effects of the different
new turbulence prescriptions are now noticeable on the rotation
profiles below the convective envelope. When including Dh,v (if
active for Re > Re;c for R > 0.5 R?), a slightly larger extraction
of angular momentum is observed below the envelope because
of the more efficient transport from the inside of the star to the
surface driven by the enhanced meridional circulation sustained
by the additional horizontal turbulent diffusion (Appendix C).
As seen on the bottom panel of Fig. 5, the external layers of
the radiative core are the place where the radial differential rota-
tion rate is the more important. This is due both to the radius
increasing and to the torque applied at the surface by the mag-
netised stellar wind. The vertical shear instability is then more
able to develop and contributes to the horizontal turbulent diffu-
sion coefficient (see Fig. 2). Also, one can note that the rotation
profile is independent of the chosen characteristic timescale for
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Fig. 5. Top row: angular velocity profile represented at the same evolutionary stages and with the same colour code as in Fig 2. Bottom row: ratio
between the differential rotation and the rotation rate, equivalent to the dimensionless parameter X in Eqs. (49), (51), and (54).

turbulence (τ). Indeed, models A, B, and C lead to very similar
rotation profiles at the age of the Sun and at the end of the MS.

The rotation profile flatness obtained with Mathis et al.
(2004; model D) at the ZAMS is associated to a very strong
meridional circulation triggered by the contraction during the
PMS. This is especially true in the case of the fast rotating model
since in their expression, Dh,h depends at the first order on the
rotation rate.

The differential rotation obtained with the new prescriptions
can also be seen in Fig. 6 where we draw on the top panel the
evolution of the normalised core to the surface differential rota-
tion (i.e. the difference between the mean rotation rate of the
radiative core, Ωrad, and the surface rotation, Ωs, as defined in
Amard et al. 2016 normalised by their sum) as a function of
time. A value close to one indicates a very strong gradient of
rotation between the radiative core and the convective envelope
of the star, while ∆Ω = 0 means that the model rotates as a solid
body. This diagram has to be read in parallel to the bottom panel
which shows the evolution with time of both the surface angular
velocity (gyrotracks) and the mean radiative core angular veloc-
ity. Predictions of the models are compared with rotation periods
observed in stars with masses between 0.9 and 1.1 M� in open
clusters over a large age range collected by Bouvier et al. (2014,
and references therein). We note that the three models associ-
ated to different initial rotation rates reproduce the statistical data
points for surface rotation with time fairly well, in a similar way
to Amard et al. (2016). Even though the vertical shear turbulence
prescription is different, it has little effects on the global trans-
port of angular momentum, hence on the surface rotation.

The same prescription for the extraction of angular momen-
tum by the wind is used for all the models (see Sect. 3.2). There-
fore, the surface and the core rotation rates evolve differently
only depending on the way we describe the horizontal turbu-
lence. We see that the global evolutions of both the surface and
the core rotation rates are almost unchanged from one model
to the other. Indeed, even though the transport generated by the
added term to the horizontal turbulent diffusion can be very high
in amplitude locally, it is active only when the vertical shear

instability is triggered. For a MS solar-mass star, this is the
case for approximately 10% of the lifetime, and this fraction
decreases with the strength of the stellar-wind torque applied at
the surface that generates radial differential rotation.

While the horizontal turbulent transport induced by 3D
motions triggered by the vertical shear instability can have a very
high amplitude locally (for instance, below the convective enve-
lope), it is a self-regulated mechanism. Indeed, if the vertical
shear is unstable and leads to important Dh, an efficient merid-
ional circulation is triggered that weakens the radial differential
rotation (see Appendix C) because of the advection of angular
momentum towards the surface to values below the threshold
needed to sustain the vertical shear instability and the source
of the associated strong horizontal turbulent transport thus van-
ishes. This self-regulation is the cause of the oscillations of the
surface angular velocity that appear in the lower panel of Fig. 6
for ages larger that 600 Myrs approximately.

In addition, while the potentially strong horizontal turbulent
transport and the induced efficient advection of angular momen-
tum locally flattens the rotation profile, it also steepens the gra-
dient of angular velocity on each side of the turbulent region
because of the spatial discretisation that is inherent to any stel-
lar evolution numerical code. This enhances the shear with the
neighbouring layers that in turn triggers the turbulence during
the next time step. That transient phenomenon is responsible for
the radial oscillations that are observed on Figs. 2–5 below the
convective envelope on the main sequence when Dh,v is locally
several orders of magnitude higher than Dh,h. A smoother tran-
sition would likely be possible with a non-local instability crite-
rion (see e.g. Gagnier & Garaud 2018).

As a partial conclusion, additional transport mechanisms
such as internal gravity waves, magnetic fields or other insta-
bilities (we refer the reader to the introduction for relevant ref-
erences) are therefore still necessary to explain the efficient
extraction of angular momentum from the core of low-mass stars
during their PMS and MS. The case of subgiant and red giant
stars, which have been successfully sounded thanks to space-
based asteroseismology, should also be examined.

A22, page 11 of 16

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629187&pdf_id=5


A&A 620, A22 (2018)

Fig. 6. Bottom panel: evolution of the angular velocity as a func-
tion of time for models computed with the prescriptions for Dh from
Mathis et al. (2004), Zahn (1992), and that of the present paper with
the three different characteristic time scales for turbulence (black, red,
green (τ = 1/S ), blue (τ = 1/(2Ω+S )) and magenta (τ = 1/NΩ), respec-
tively). Scaled on the left is the rotational period in days and on the
right the angular velocity in solar units with Ω� = 2.86× 10−6 s−1. Each
cross represents a star belonging to an open cluster which age and mass
(between 1.4 and 1.6 M�) have been taken from literature. All observa-
tional data are taken from Gallet & Bouvier (2015) and Bouvier et al.
(2014) and references therein. The solid lines show the evolution of the
surface rotation, and dashed lines the evolution of the mean radiative
core rotation rate. Top panel: evolution of the normalised core to surface
differential rotation rate for the six 1.0 M�, Z� models as colour-coded
in Fig. 2.

3.3. Case of red giant stars illustrated with a 1.25 M� model

The asteroseismic data obtained for the stellar core rotation from
the mixed modes stochastically excited in sub-giants and red
giants provide very good constraints for the transport of angular
momentum in evolved stars (e.g. Beck et al. 2012; Mosser et al.
2012; Deheuvels et al. 2012, 2014, 2015; Spada et al. 2016;
Gehan et al. 2018). The observed stars have masses ranging
between 1.1 and 1.4 M�. We thus focus now on the intermedi-
ate mass of 1.25 M� for which we evolve models from the PMS
to the RGB phase with the same assumptions and prescription
for the loss of angular momentum through stellar winds as for
the previous 1.0 M� models.

We see in Sect. 3.2.3 that the timescale associated with the
turbulence (τ) does not change drastically the results obtained
for the rotation evolution. Therefore, to simplify the compari-
son, we only show here two 1.25 M� models with Dh computed
following Mathis et al. (2004) only and the new one assuming
that τ = 1/S (same transport as model A)3.

Figure 7 shows the evolution of the surface rotation of these
two models compared to the data given by Deheuvels et al.
(2014) for a few sub-giant stars. The braking is not calibrated
to reproduce the surface velocity of such stars, therefore we do
not expect to reproduce quantitatively the data. As such, the sur-

3 Models with τ = 1/(2Ω + S ) and τ = 1/NΩ have been computed and
are indistinguishable from the model computed with τ = 1/S .

Fig. 7. Evolution of the surface and core rotation rates (solid and dashed
lines respectively) as a function of the stellar radius that increases
with time (MS, subgiant, and RGB correspond respectively to Reff /R�
between ∼1.0 and 1.8, 1.8 and 3, and higher than 3). We show theoret-
ical predictions for two 1.25 M� models at solar metallicity computed
with the prescription for Dh = Dh,h by Mathis et al. (2004; black) and
the new prescription including both components of Dh = Dh,v + Dh,h for
the case τ = 1/S (green). We compare the model predictions with rel-
evant data for stars with asteroseismic masses between 1.1 and 1.4 M�.
For SGB stars we show surface and core rotation rates (black and orange
dots) derived by Deheuvels et al. (2014). For RGB stars, we plot the
core rotation rates derived by Mosser et al. (2012; red dots).

face angular velocity of the models is too high. Two effects may
be responsible for this: a lack of angular momentum extraction
by the wind as well as a lack of transport in the radiative region
of the star. While the first seems obvious, the latter needs some
explanation: a more efficient transport of angular momentum on
the MS would lead to a smaller reservoir of angular momentum
when the star begins to expand on the sub-giant branch, thus to
a smaller angular velocity.

In Fig. 7, we also show the angular velocity of the rotating
core of the same models. To be able to compare them with aster-
oseismic data, we have computed the core rotation rate as the
mass average of the angular velocity in the resonant cavity of
gravity-dominated modes, that is in the region below the peak
of the chemical Brunt–Väisälä frequency (N2

µ =
gϕ

HP
∇µ, with HP

the pressure scale height, ∇µ the mean molecular weight gradi-
ent, and φ = (∂ ln ρ/∂ ln µ)P,T). As for the MS evolution, the rota-
tional tracks are very close. The model with the new prescription
shows a core rotating slightly slower as it is expected from a
model with a more efficient coupling. However, this difference
is far from sufficient to explain the asteroseismic data derived
for the subgiants and red giants cores by Mosser et al. (2012).
Hence again, other mechanisms such as propagative internal
gravity waves (Talon & Charbonnel 2008; Pinçon et al. 2017),
mixed modes (Belkacem et al. 2015a,b), or MHD instabilities
(Rüdiger et al. 2015) should be invoked to potentially reproduce
observations.
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4. Conclusion

In this work, we derive new theoretical prescriptions for the
anisotropy of the turbulent transport in differentially rotating
stellar radiation zones. Extending the theoretical formalism
derived by Kitchatinov & Brandenburg (2012) to the case of
rotating stably stratified flows with a vertical shear, we find that
the ratio between the horizontal and the vertical turbulent trans-
port scales as N4τ2/

(
2Ω2

)
, where we recall that N and Ω are

the buoyancy and rotation frequencies, respectively, and τ is the
time characterizing the source of the turbulence. This shows that
if anisotropy increases with stratification, the Coriolis acceler-
ation constitutes the restoring force in the horizontal direction,
which was ignored in previously derived prescriptions.

We propose here three physically-motivated expressions for
τ: τ = 1/S , 1/ (2Ω + S ), and 1/NΩ, where S is the shear
and NΩ the epicyclic frequency. The first choice corresponds to
the model for the turbulent transport induced along the radial
direction by the vertical shear instability proposed by Zahn
(1992) and validated by recent direct numerical simulations
(Prat & Lignières 2013; Garaud & Kulenthirarajah 2016). The
second and third choices correspond to the introduction of the
influence of rotation on the shear-induced turbulence. Their
robustness should be validated in a near future by direct numer-
ical simulations of rotating stably stratified flows with an unsta-
ble vertical shear in the range of parameters that corresponds
to stellar regimes. These required simulations, which are out of
the scope of this work, will also allow us to improve the Zahn
(1992)’s turbulent model by taking into account the action of the
Coriolis acceleration, of the chemical stratification and viscosity
as in Prat et al. (2016), and of the interactions with the horizontal
turbulence (Talon & Zahn 1997).

Then, the turbulent transport coefficient in the horizontal
direction, induced by the 3D turbulent motions sustained by the
vertical shear-driven instability, scales as Ric (N/2Ω)2 K f (S ,Ω),
where Ric and K are the critical Richardson number and thermal
diffusivity, respectively, and f is a function that depends on the
prescription chosen for τ, when assuming the model proposed
by Zahn (1992) for the vertical turbulent transport coefficient.
We identify that f = 1 for τ = 1/S . We recall that all the
previous prescriptions (Zahn 1992; Maeder 2003; Mathis et al.
2004) have no explicit dependence on the entropy (and chem-
icals) stratification and do not take the action of the Coriolis
acceleration into account, although these are the two restoring
forces for turbulent flows in differentially rotating stellar radia-
tion zones.

When applied to complete stellar evolution models of
rotating low-mass, solar-metallicity stars, accounting for the
feedback of the vertical shear in the horizontal direction (Dh =
Dh,h + Dh,v), the new prescriptions do not modify greatly the
results previously obtained using the Mathis et al. (2004) pre-
scription (Dh = Dh,h) for the internal and surface rotation
rates. Although the horizontal turbulent transport induced by 3D
motions triggered by the vertical shear instability can have a
very high amplitude locally (for instance below the convective
envelope of low-mass main-sequence stars), it is a self-regulated
mechanism. Indeed, if the vertical shear is unstable and leads
to important Dh, an efficient meridional circulation is triggered
that weakens the radial differential rotation to values below the
threshold needed to sustain the vertical shear instability and the
source of the associated strong horizontal turbulent transport
thus vanishes. This also leads to a quenching of the vertical tur-
bulent transport. As a consequence, this mechanism is not able to
provide the extraction of angular momentum from stellar cores

needed to explain their rotation rates in the Sun and in main-
sequence, subgiant and red giant low-mass and intermediate-
mass stars. A supplementary mechanism such as internal gravity
waves or/and magnetic fields and their instabilities should thus
be invoked. In this framework, this work demonstrates the
great importance of pursuing the efforts to consistently model
turbulent transport induced by rotation-driven hydrodynamical
instabilities, that have a major impact on the structural and
rotational evolution of stars. This strongly motivates future
works to improve: (i) the physical description of the radial turbu-
lent transport induced by the vertical shear instability with taking
the action of the Coriolis acceleration, the effects of the chemical
stratification and of viscosity (Prat et al. 2016), and the interac-
tions with the horizontal turbulence (Talon & Zahn 1997) into
account; (ii) the prescriptions for the horizontal and vertical tur-
bulent transports induced by instabilities of the horizontal differ-
ential rotation. Their strengths have to be carefully evaluated in
order to be able to discuss in a consistent framework the effects
of other transport mechanisms of angular momentum such as
internal gravity waves and magnetic fields.
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Appendix A: Horizontal averages

A.1. Case of τ = 1/ (2Ω + S )

The use of this prescription for the turbulent characteristic time
requires to compute integrals of the form

I =

∫ π

0

sin3 θ dθ(
1
x

+ sin θ
)2 , (A.1)

which are also defined when x > −1. The substitution t = tan
θ

2
gives

I = 16x2
∫ ∞

0

t3dt

(1 + t2)2 [
(t + x)2 + 1 − x2]2 · (A.2)

The partial fraction decomposition of the integrand is

−
1

4x3

1
t2 + 1

+
1

4x2

t
(t2 + 1)2 +

1
4x3

1
(t + x)2 + 1 − x2

+
1

4x2

t[
(t + x)2 + 1 − x2]2 ·

(A.3)

When 1 − x2 > 0 (i.e., when −1 < x < 1), this leads to[
(x − π)(1 − x2) + x

] √
1 − x2

I = 2
+ (2 − 3x2)

[
π
2 − arctan

(
x

√
1−x2

)]
x(1 − x2)3/2 · (A.4)

When 1 − x2 < 0 (for x > 1), the last two terms of Eq. (A.3)
can be further decomposed, and one finally obtains

I =

2
[
(x − π)(x2 − 1) − x

] √
x2 − 1 + (2 − 3x2) ln

∣∣∣∣∣∣∣ x −
√

x2 − 1

x +
√

x2 − 1

∣∣∣∣∣∣∣
x(x2 − 1)3/2 ·

(A.5)

These analytical results allow us to avoid to compute latitudinal
averages in Eqs. (52) and (54) numerically and to speed up their
evaluation.

A.2. Case of τ = 1/NΩ

The use of this prescription requires to compute integrals of the
form

J =

∫ π

0

sin3 θ dθ
1
x

+ sin2 θ

, (A.6)

which are defined when x > −1. The classical substitution t =
cos θ gives

J =

∫ 1

−1

t2 − 1

t2 −

(
1 +

1
x

)dt. (A.7)

When 1 + 1/x > 0, that corresponds to x > 0, we use the
partial fraction decomposition

t2 − 1
t2 − α2 = 1 +

α2 − 1
2α

(
1

t − α
−

1
t + α

)
(A.8)

with α2 = 1 + 1/x to obtain

J = 2 +
1

x

√
1 +

1
x

ln

∣∣∣∣∣∣∣∣∣∣∣∣
1 −

√
1 +

1
x

1 +

√
1 +

1
x

∣∣∣∣∣∣∣∣∣∣∣∣ . (A.9)

When 1+1/x < 0, that corresponds to −1 < x < 0, the partial
fraction decomposition

t2 − 1
t2 + α2 = 1 −

1 + α2

t2 + α2 (A.10)

leads to

J = 2 +
2

x

√∣∣∣∣∣1 +
1
x

∣∣∣∣∣
arctan


1√∣∣∣∣∣1 +

1
x

∣∣∣∣∣
 . (A.11)

Appendix B: Validation of the shellular rotation
assumption

We recall the first-order expansion of the angular velocity intro-
duced by Mathis & Zahn (2004):

Ω (r, θ) = Ω (r) + Ω2 (r) Q2 (θ) (B.1)

with Q2 (θ) = P2 (cos θ) +
1
5

, where P2(θ) is the second-order
Legendre polynomial, and

Ω =

∫ π

0 Ω sin3 θ dθ∫ π

0 sin3 θ dθ
(B.2)

the so-called shellular rotation introduced by Zahn (1992), which
is the average of the angular velocity on an isobar.

According to Zahn (1992) and Mathis & Zahn (2004), the
asymptotic solution for Ω2 can be expressed as

Ω2

Ω
=

1
Dh

1
5

r [2V2 (r) − α (r) U2 (r)] with α =
1
2

d ln
(
r2Ω

)
d ln r

(B.3)

when solving the equation for the transport of the angular
momentum in the latitudinal direction assuming a short turbu-
lent diffusion timescale r2/Dh. Here, U2 and V2 are the l = 2
radial functions of the vertical and latitudinal components of the
rotation-driven meridional circulation respectively

UM (r, θ) = U2 (r) P2 (cos θ) er + V2 (r)
dP2 (cos θ)

dθ
eθ, (B.4)

which is expanded on Legendre polynomials. This sub-
sonic large-scale flow verifies the anelastic approximation, i.e.
∇ · (ρUM) = 0, where acoustic waves are filtered out, that leads
to

V2 =
1

6ρr
d
dr

(
ρr2U2

)
. (B.5)

With Dh, U2 and Ω known, V2 hence Ω2 can be computed at
each time step and at each radius in the process of solving the
angular momentum transport equation (Mathis & Zahn 2004).
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Fig. B.1. Ratio between the horizontal variation of the angular velocity and the mean angular velocity on an isobar, expressed as a horizontal
Rossby number, for the same models and colour code as in Fig. 2.

Then, we introduce the horizontal Rossby number (see also
Billant & Chomaz 2001)

Roh =
u⊥

2Ωl⊥
≡

1
2Ω
| sin θ∂θΩ|. (B.6)

To follow this quantity using an 1D stellar evolution code, we
introduce its horizontal average over an hemisphere only

〈
Roh

〉
θ

=

∫ π/2
0 Roh sin θ dθ∫ π/2

0 sin θ dθ
=

3
8

Ω2

Ω
, (B.7)

because of the anti-symmetry of sin2 θ ∂θQ2 (θ) around the
equator. The horizontal Rossby number is thus given by
the ratio between the horizontal differential rotation (Ω2) and the
mean shellular rotation (Ω) similarly to the one introduced by
Spiegel & Zahn (1992).

To verify the shellular rotation assumption, we expect in the
strongly stratified regime Dv � Dh and thus Ω2 � Ω (e.g. Zahn
1992), i.e.

〈
Roh

〉
θ
� 1. This is verified in our simulations where

our new prescriptions are implemented as illustrated in Fig. B.1.

Appendix C: Transport loop and strong horizontal
turbulence

A larger Dh leads to an increase of the transport of angular
momentum by the meridional circulation and of the horizon-
tal diffusion of heat over an isobar (we refer the reader to
the heat transport equation derived in Maeder & Zahn (1998;

Eq. (4.36)) and in Mathis & Zahn (2004; Eqs. (101) and (102)).
As can be seen in Fig. 5, which shows the rotation profile for
the different Dh prescriptions, the amplified transport leads to a
locally weaker differential rotation (its evolution is discussed in
details in Sect. 3.2.3) than with smaller horizontal turbulent dif-
fusion coefficients. To understand the details of what is going
on with a stronger horizontal transport, it is interesting to con-
sider the hydrodynamical transport loop in stellar radiation zones
as introduced by Rieutord (2006) and Decressin et al. (2009).
First, the meridional circulation is mechanically driven by the
wind and the shear-induced vertical transport (see Eq. (16) in
Decressin et al. 2009). Then, the circulation advects heat and
because of the strong horizontal diffusion of entropy over the
isobar, the temperature relaxes to a state where its fluctuation
on an isobar is smaller than in the case with a weaker Dh. This
can be understood by looking at Eq. (19) in Decressin et al.
(2009) and considering a simplified balance between heat
advection and horizontal diffusion. Next, the radial gradient of
rotation is deduced from the thermal wind balance given by
Eq. (17) in Decressin et al. (2009). A smaller temperature fluc-
tuation leads to a smaller radial gradient of angular velocity. The
vertical viscous shear-induced turbulent transport thus dimin-
ishes as well as the corresponding term driving the meridional
circulation (Eq. (16) in Decressin et al. 2009). This term (noted
Uv in Decressin et al. 2009) has an opposite sign compared to the
term driven by the angular momentum extraction due to the stel-
lar wind (noted UΓ in Decressin et al. 2009). The amplitude of
the meridional circulation thus increases in absolute value with a
stronger advected flux of angular momentum towards the stellar
surface and the transport loop is closed.
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